Acta Cryst. (1996). C52, 458-460

trans-(3aR)-1,2,3,3a-Tetrahydro-3a-(methoxymethyl)-5-methyl-7-nitropyrrolo-[1,2-*a*]quinoline-4,4(5*H*)-dicarbonitrile: Four Independent Molecules in the Unit Cell

ERIK KELDERMAN,^a WILLEM VERBOOM,^a JOHAN F. J. ENGBERSEN,^a DAVID N. REINHOUDT^a AND SYBOLT HARKEMA^b

^aLaboratory of Organic Chemistry, University of Twente, POB 217, 7500 AE Enschede, The Netherlands, and ^bLaboratory of Chemical Physics, University of Twente, POB 217, 7500 AE Enschede, The Netherlands

(Received 5 September 1994; accepted 25 August 1995)

Abstract

The structure of the title compound, $C_{17}H_{18}N_4O_3$, has been determined. The crystal structure contains four independent molecules which differ in the conformation of the methoxymethyl side chains.

Comment

Chiral pyrrolo[1,2-a]quinolines can be used as secondorder non-linear optical materials. Non-linear optical properties of crystals of a number of these compounds have been reported (Kelderman, Verboom, Engbersen, Harkema, Heesink, Lehmusvaara, van Hulst, Reinhoudt, Derhaeg & Persoons, 1992; Kelderman, 1993). The title compound, (I), which was prepared from enantiomerically pure starting compounds, shows second-order nonlinear optical properties.

Four independent molecules are found in the crystal structure of the title compound (Fig. 2). They have the same overall conformation for the molecular framework, but differ in the orientation of the methoxymethyl side chain. Satisfactory agreement is found in corresponding bond lengths and angles in the different molecules. The differences in conformation of the methoxymethyl side chains can be seen in the list of selected torsion angles given in Table 2. The compound studied is chiral. No attempts have been made to determine the absolute configuration, which was assumed to be the same as that of one of the starting materials (Nijhuis, Verboom, Reinhoudt & Harkema, 1987). Molecule 4 shows rather

large displacement parameters for the nitro group and the connected phenyl ring. The shape of the ellipsoids suggests librational motion or statistical disorder in the plane of the phenyl ring. No obvious reason for this could be found from a packing diagram (Fig. 3), which shows that all nitro groups are more or less in the same plane and that the orientation of the mean planes through the molecular skeleton of the different molecules is approximately parallel.

Fig. 1. PLUTO drawing (Motherwell & Clegg, 1978) showing the atomic numbering. Corresponding atoms of molecules 1, 2, 3 and 4 are indicated by suffixes A, B, C and D, respectively.

Molecule 2

Molecule 1

Molecule 3

Molecule 4

Fig. 2. ORTEPII view (Johnson, 1976) showing the conformations of the different molecules. Displacement ellipsoids are scaled to include 50% probability.

Fig. 3. ORTEPII stereoview (Johnson, 1976) showing the packing of the different molecules in the unit cell. Displacement ellipsoids are scaled to include 25% probability.

Experimental

The title compound was prepared by reaction of 1,2,3,3a-tetrahydro-3a-(methoxymethyl)-5-methylpyrrolo[1,2-*a*]quinoline-4,4(5*H*)-dicarbonitrile with concentrated HNO₃ in CH₂Cl₂ for 0.5 h (Nijhuis, Verboom, Abu El-Fadl, Harkema & Reinhoudt, 1989; Nijhuis, Verboom, Abu El-Fadl, van Hummel & Reinhoudt, 1989; Kelderman, Noorlander-Bunt, van Eerden, Verboom & Reinhoudt, 1991). Light-yellow crystals were obtained by recrystallization from methanol.

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

Cell parameters from 25 reflections $\theta = 7.0-14.1^{\circ}$ $\mu = 0.087 \text{ mm}^{-1}$ T = 293 KParallelepiped

 $0.60 \times 0.60 \times 0.50 \text{ mm}$

3 standard reflections frequency: 60 min intensity decay: <1%

Light yellow

 $\theta_{\text{max}} = 25^{\circ}$ $h = -17 \rightarrow 17$ $k = 0 \rightarrow 15$ $l = 0 \rightarrow 20$

Crystal data

$C_{17}H_{18}N_4O_3$
$M_r = 326.4$
Monoclinic
P21
<i>a</i> = 14.452 (3) Å
<i>b</i> = 13.089 (3) Å
c = 17.558 (3) Å
$\beta = 96.01 (3)^{\circ}$
$V = 3303 (2) \text{ Å}^3$
Z = 8
$D_x = 1.312 \text{ Mg m}^{-3}$

Data collection

Enraf–Nonius CAD-4
diffractometer
$\omega/2\theta$ scans
Absorption correction:
none
6084 measured reflections
6084 independent reflections
4307 observed reflections
$[I > 3\sigma(I)]$

Refinement

$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction:
Zachariasen (1963)
Extinction coefficient:
$1.8(4) \times 10^{-7}$
Atomic scattering factors
from International Tables
for X-ray Crystallography
(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\mathring{A}^2)

$B_{\rm iso}$ for starred atoms; $B_{\rm eq} =$	$(8\pi^2/3)\sum_i\sum_jU_{ij}a_i^*a_j^*\mathbf{a}_i.\mathbf{a}_j$	for others.
---	---	-------------

	x	у	Z	B_{eq}/B_{iso}	C22C	
015A	-0.0004 (3)	0.4058 (3)	0.0707 (3)	8.2 (1)	C24C	
O16A	-0.0571 (3)	0.2583	0.0455 (3)	8.4(1)	CID	
023A	0.1887 (2)	0.0448 (3)	0.3273 (2)	4.64 (7)	C2D	
015B	0.9149 (3)	-0.6810 (3)	0.2368 (2)	6.8 (1)	C3D	
016B	0.9836 (3)	-0.7966 (3)	0.3085 (3)	7.7 (1)	C4D	
023B	1.3115 (2)	-0.4696 (3)	0.6141 (2)	5.73 (9)	C5D	
015C	1.0515 (3)	-0.1762 (3)	0.2714 (2)	6.8 (1)	C6D	
016C	0.9777 (3)	-0.2920 (3)	0.2022 (2)	6.9 (1)	C7D	
023 <i>C</i>	0.8145 (3)	0.0571 (3)	-0.0612 (2)	7.1 (1)	C8D	
015D	1.0542 (4)	-0.2083 (6)	0.4811 (3)	17.9 (2)	C9D	
016D	1.0470 (3)	-0.3683 (7)	0.5098 (3)	15.3 (2)	C11D	
023D	0.7728 (2)	-0.4416 (3)	0.1804 (2)	5.50 (9)	C12D	

NIOA	0 2122 (2)	0 12(0 (2)	0.2402 (2)	2.25 (0)
NIUA	0.3132(2)	0.1309 (3)	0.2402 (2)	3.35 (8)
NI4A	0.0044 (3)	0.3125 (4)	0.0746 (2)	5.7(1)
N19A	0.3662 (3)	0.0295 (4)	0.0654 (2)	6.2(1)
N21A	0.3017 (3)	-0.2233 (4)	0.2019 (3)	6.2 (1)
N10B	1.2329 (3)	-0.4231 (3)	0.4131 (2)	3.79 (8)
N14B	0.9763 (3)	-0.7085 (4)	0.2862 (2)	5.3 (1)
N19 <i>B</i>	1.3973 (3)	-0.5620 (4)	0.3315 (2)	5.9 (1)
N21 <i>B</i>	1.4723 (3)	-0.6150(4)	0.5664 (3)	6.4 (1)
N10C	0.7514 (3)	0.0914 (3)	0.0816(2)	4.00 (9)
N14C	0.9906 (3)	-0.2030(4)	0.2215 (2)	5.2 (1)
N19C	0.5744(3)	-0.0682(4)	0.1407(3)	71(1)
N21C	0 5356 (4)	-0.0816(5)	-0.1020(3)	88(2)
NIOD	0.5550 (4)	0.2250 (2)	-0.1020(3)	277(9)
NIAD	0.0679(2)	-0.3330(3)	0.2034 (2)	3.77(0)
NI4D	1.0172(3)	-0.2906 (7)	0.4738 (3)	(1.7(2))
NI9D	0.0088 (3)	-0.4596 (4)	0.4500 (2)	0.4(1)
N2ID	0.6103 (4)	-0.6910 (4)	0.2772(3)	8.3 (2)
CIA	0.0851 (3)	0.2668 (4)	0.1175 (3)	4.16 (9)*
C2A	0.1534 (3)	0.3286 (4)	0.1530 (2)	4.06 (9)*
C3A	0.2299 (3)	0.2840 (4)	0.1922 (2)	3.56 (8)*
C4A	0.2377 (3)	0.1781 (3)	0.1988 (2)	2.88 (7)*
C5A	0.1683 (3)	0.1156 (3)	0.1605 (2)	3.00 (8)*
C6A	0.0917 (3)	0.1611 (4)	0.1197 (2)	3.87 (9)*
C7A	0.1754 (3)	-0.0001(3)	0.1626(2)	3.20 (8)*
C84	0.2701 (3)	-0.0283(4)	0.1813(2)	3 45 (8)
C0A	0.2791(3)	0.0203(4)	0.1013(2) 0.2551(2)	3 24 (9)
C3/1	0.3219(3)	0.0274(3)	0.2331(2)	5.0(1)*
CHA	0.3998 (3)	0.1905 (4)	0.2003 (3)	5.0(1)*
CT2A	0.4600 (4)	0.1128 (5)	0.3062 (3)	6.4 (1)*
C13A	0.4266 (3)	0.0113 (4)	0.2723 (3)	4.8 (1)*
C17A	0.1325 (3)	-0.0519 (4)	0.0911 (3)	4.6 (1)*
C18A	0.3299 (3)	0.0034 (4)	0.1163 (2)	4.2 (1)
C20A	0.2909 (3)	-0.1387 (4)	0.1912 (3)	4.3 (1)
C22A	0.2750 (3)	-0.0033(4)	0.3258 (2)	4.4 (1)
C24A	0.1448(4)	0.0153 (5)	0.3918 (2)	6.2 (1)
CIR	1 0431 (3)	-0.6341(4)	0.3182 (3)	4.13 (9)*
C2R	1.0380 (3)	-0 5358 (4)	0.2931(3)	43(1)*
C2B	1 1018 (3)	-0.4655 (4)	0.2751(3) 0.3240(2)	4.03 (0)*
CAD	1.1010(3)	-0.4033 (4)	0.3240(2)	2 29 (9)
C4D	1.1712 (3)	-0.4930(3)	0.3624 (2)	3.20 (0)
CSB	1.1770 (3)	-0.5964 (4)	0.4070(2)	3.32 (8)
C6B	1.1117 (3)	-0.6648 (4)	0.3738 (2)	3.91 (9)*
C7B	1.2550 (3)	-0.6323 (4)	0.4662 (3)	3.58 (9)*
C8B	1.3370 (3)	-0.5552 (4)	0.4665 (2)	3.55 (8)*
C9B	1.3005 (3)	-0.4449 (4)	0.4786 (2)	3.50 (8)*
C11B	1.2465 (4)	-0.3226 (4)	0.3812 (3)	5.4 (1)*
C12B	1.3219 (4)	-0.2741 (5)	0.4344 (3)	6.5 (1)*
C13B	1.3751 (3)	-0.3624(4)	0.4739 (3)	4.6 (1)*
C178	1 2835 (3)	-0.7417(4)	0.4543(3)	5.1 (1)*
CISE	1 3732 (3)	-0 5592 (4)	0 3907 (3)	39(1)
CIOD	1 4124 (3)	-0.5861(4)	0.5247(3)	44(1)
C20D	1.4124 (3)	-0.3801 (4)	0.5247(3)	4.4 (1)
C22B	1.2327 (3)	-0.4333(4)	0.5510(2)	4.0(1)
C24B	1.2738 (4)	-0.4496 (5)	0.0830(3)	0.9(2)
CIC	0.9294 (3)	-0.1263 (4)	0.1847(3)	4.11 (9)*
C2C	0.9353 (3)	-0.0268 (4)	0.2102 (3)	4.6 (1)*
C3C	0.8771 (3)	0.0461 (4)	0.1753 (2)	4.27 (9)*
C4C	0.8114 (3)	0.0201 (4)	0.1135 (2)	3.57 (8)*
C5C	0.8072 (3)	-0.0830 (4)	0.0868 (2)	3.44 (8)*
C6C	0.8654 (3)	-0.1533 (4)	0.1246 (2)	4.09 (9)*
C7C	0.7379 (3)	-0.1131 (4)	0.0189 (3)	3.88 (9)
C8C	0.6532 (3)	-0.0386 (4)	0.0164 (3)	3.89 (9)*
CPC	0.6859 (3)	0.0743 (4)	0.0148 (3)	4.15 (9)
CIIC	0.0000(0)	0 1925 (4)	0.1152(3)	54(1)*
CIPC	0.6597 (4)	0.1725(4)	0.0652 (4)	7 2 (1)*
C12C	0.6081 (4)	0.1518(4)	0.0032(4)	5.4(1)*
CIEC	0.0081 (4)	0.1318 (4)	0.0243(3)	5 2 (1)*
	0.7085 (4)	-0.2230 (4)	0.0190(3)	$3.5(1)^{-1}$
CISC	0.6068 (3)	-0.0553 (4)	0.0859 (3)	4.5(1)
C20C	0.5860 (4)	-0.0632 (5)	-0.0501(3)	6.0(1)
C22C	0.7296 (4)	0.1005 (5)	-0.0591 (3)	6.6 (1)
C24C	0.8734 (5)	0.1108 (5)	-0.1060 (4)	8.8 (2)
CID	0.9319 (3)	-0.3025 (6)	0.4231 (3)	7.4 (2)
C2D	0.8889 (4)	-0.2173 (5)	0.3911 (3)	7.7 (1)
C3D	0,8089 (4)	-0.2290 (4)	0.3447 (3)	5.6 (1)
C4D	0.7704 (3)	-0.3271(4)	0.3284 (2)	3.68 (9)
CSD	0 8176 (3)	-0.4126(4)	0 3596 (2)	3.8 (1)
CED	0.0170 (3)	-0.4001(5)	0.0000 (2)	60(1)
C7D	0.07/2 (3)	0.5107 (3)	0.4000 (3)	2 01 (0)
	0.7808 (3)	-0.519/ (4)	0.3390 (3)	3.91 (9)
	0.0/34 (3)	-0.5121 (4)	0.5222 (3)	5.89 (9)
C9D	0.6471 (3)	-0.4316 (4)	0.2592 (2)	5.87 (9)
CIID	0.6279 (4)	-0.2497 (5)	0.2630 (3)	6.5 (1)*
C12D	0.5412 (5)	-0.2959 (6)	0.2215 (4)	8.2 (2)*

C13D	0.5429 (4)	-0.4051(4)	0.2482 (3)	5.5 (1)*
C18D	0.6340 (3)	-0.4828(4)	0.3939 (3)	4.5 (1)
C20D C22D	0.6359 (4) 0.6789 (3)	-0.6128(4) -0.4632(5)	0.2977 (3)	5.5 (1) 5.0 (1)
C24D	0.8097 (4)	-0.4785(5)	0.1149 (3)	6.6 (1)

Table 2. Selected geometric parameters (Å, °) for
molecule 1 and selected torsion angles (°)

O15AN14A	1.225 (6)	C3AC4A	l I	1.396 (6)
O16A—N14A	1.207 (5)	C4A—C5A	1	1.411 (5)
O23A—C22A	1.399 (6)	C5AC6A		1.389 (6)
O23A—C24A	1.409 (6)	C5AC7A		1.518 (6)
N10AC4A	1.357 (5)	C7AC8A	1	1.544 (6)
N10AC9A	1.460 (6)	C7A-C17	A	1.503 (6)
N10A-C11A	1.446 (6)	C8AC9A	1	1.558 (6)
N14A—C1A	1.450 (6)	C8AC18	3A	1.480 (6)
N19AC18A	1.135 (6)	C8AC20)A	1.463 (7)
N21A-C20A	1.130(7)	C9AC13	3A	1.526 (6)
C1AC2A	1.374 (6)	C9AC22	2A	1.529 (6)
C1AC6A	1.386 (7)	C11AC1	.2A	1.515 (8)
C2AC3A	1.370 (6)	C12AC1	3A	1.514 (8)
C22A—O23A—C24A	111.7 (4)	C5AC7A	4—C17A	114.1 (3)
C4A-N10A-C9A	122.3 (3)	C8AC7A	4C17A	112.1 (4)
C4A-N10A-C11A	124.4 (4)	C7AC8A	1C9A	110.9 (3)
C9A-N10A-C11A	112.1 (3)	C7AC8A	AC18A	108.5 (3)
O15A—N14A—O16A	121.8 (4)	C7AC8A	1C20A	111.1 (4)
O15AN14AC1A	118.6 (5)	C9AC8A	4C18A	108.9 (4)
016A—N14A—C1A	119.6 (4)	C9AC8A	1-C20A	109.4 (3)
N14AC1AC2A	119.5 (4)	C18A—C8	3AC20A	108.0 (4)
N14A-C1A-C6A	118.3 (5)	N10AC9	9A—C8A	106.9 (3)
C2AC1AC6A	122.1 (4)	N10AC9	9AC13A	103.7 (3)
C1A-C2A-C3A	118.7 (5)	N10AC9	AC22A	111.5 (4)
C2A-C3A-C4A	121.3 (4)	C8AC9A	4C13A	113.6 (4)
N10AC4AC3A	119.5 (4)	C8A—C9/	4—C22A	112.4 (3)
N10AC4AC5A	121.2 (4)	C13AC9	0AC22A	108.5 (3)
C3AC4AC5A	119.3 (3)	N10A-C	11 <i>A</i> —C12A	103.8 (4)
C4AC5AC6A	119.1 (4)	C11AC12AC13A		103.7 (4)
C4A—C5A—C7A	121.6 (3)	C9A-C13A-C12A		103.1 (4)
C6AC5AC7A	119.3 (4)	N19A-C18A-C8A		177.6 (5)
C1AC5A	119.4 (4)	N21A-C20A-C8A		177.2 (5)
C5A—C7A—C8A	107.8 (3)	O23A-C22A-C9A		111.7 (3)
	Molecule 1	Molecule 2	Molecule 3	Molecule 4
(24-02-02)-02	179 1 (4)	172 4 (5)	-153 1 (5)	173 4 (5)
N10-C9-C22-023	42.9 (5)	171 7 (4)	489(6)	404(6)
C8_C9_C22_023	-771(5)	54 3 (5)	-72 0 (6)	-80 5 (5)
C13_C9_C22_023	1564 (4)	-744(5)	161 9 (4)	152 2 (4)
	10011 (7)	1 (3)	10117 (7)	

The O, N and C atoms of the cyano and methoxymethyl groups were refined with anisotropic displacement parameters. The atoms of the phenyl ring in molecule 4 were also refined anisotropically in view of their rather large thermal motion. H atoms were placed at calculated positions (C—H 0.95 Å) and treated as riding atoms.

The structure was solved using *MULTAN* (Germain, Main & Woolfson, 1971) and refined by full-matrix least squares. Weights for each reflection in the refinement were $w = 1/\sigma^2(F_o) = 4F_o^2/\sigma(F_o^2)$, $\sigma(F_o^2) = \sigma^2(I) + (pF_o^2)^2$; the value of the instability factor p was determined to be 0.03. All calculations were performed using *SDP* (B. A. Frenz & Associates Inc., 1983). Data collection used *CAD*-4 *EXPRESS* (Enraf-Nonius, 1992).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: AB1224). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- B. A. Frenz & Associates Inc. (1983). *Structure Determination Package*. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- Enraf-Nonius (1992). CAD-4 EXPRESS User Manual. Enraf-Nonius, Delft, The Netherlands.
- Germain, G., Main, P. & Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kelderman, E. (1993). Thesis, University of Twente, Enschede, The Netherlands.
- Kelderman, E., Noorlander-Bunt, H. G., van Eerden, J., Verboom, W. & Reinhoudt, D. N. (1991). Recl Trav. Chim. Pays-Bas, 110, 115-123.
- Kelderman, E., Verboom, W., Engbersen, J. F. J., Harkema, S., Heesink, G. J. T., Lehmusvaara, E., van Hulst, N. F., Reinhoudt, D. N., Derhaeg, L. & Persoons, A. (1992). Chem. Mater. 4, 626–631.
- Motherwell, W. D. S. & Clegg, W. (1978). *PLUTO. Program* for *Plotting Molecular and Crystal Structures*. University of Cambridge, England.
- Nijhuis, W. H. N., Verboom, W., Abu El-Fadl, A., Harkema, S. & Reinhoudt, D. N. (1989). J. Org. Chem. 54, 199-209.
- Nijhuis, W. H. N., Verboom, W., Abu El-Fadl, A., van Hummel, G. J. & Reinhoudt, D. N. (1989). J. Org. Chem. 54, 209-216.
- Nijhuis, W. H. N., Verboom, W., Reinhoudt, D. N. & Harkema, S. (1987). J. Am. Chem. Soc. 109, 3136-3138.
- Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1996). C52, 460-462

Dimethyl(2-{[2,3-di(*p*-tolyl)-5-methyl-1indenylidene](*p*-tolyl)methyl}-5-methoxyphenylmethyl)amine†

JUAN M. FERNÁNDEZ-G, KATIA SOLORZANO-MALDONADO, KALIYAMOORTHY PANNEERSELVAM, ADELA RODRÍGUEZ-ROMERO AND MANUEL SORIANO-GARCÍA

Instituto de Química, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, México DF 04510, México

(Received 25 October 1994; accepted 24 July 1995)

Abstract

In the title compound, $C_{42}H_{41}NO$, all the phenyl rings are twisted out of the plane of the indenylidene ring. The molecules are held together in the crystal by van der Waals interactions.

Comment

It has been reported that the reaction between cyclopalladated N,N-dimethylbenzylamine bis(acetonitrile)tetrafluoroborate and diphenylacetylene gives a polycyclic compound as its main product (Tao, Sil-

[†] Contribution No. 1328 of the Instituto de Química, UNAM.